
8 The Delphi Magazine Issue 64

Using InterBase From Delphi
by Nigel Cohen

This article explains the use of
InterBase from within Delphi,

in a BDE-independent environ-
ment. It is intended for all Delphi
programmers who currently use
the BDE, and for those want to
make better use of InterBase in a
way that will work within both
the Windows and (using Kylix)
Linux environments.

Why Switch From The BDE?
Borland’s entire focus at present
seems to be providing program-
mers using Delphi, C++ and Java
with a consistent tool to produce
native executables that run under
both Windows and Linux from the
same (or at least very similar)
source code.

There is a clear belief in some
quarters that Linux is due to
become a mainstream operating
system for desktop computers.
Even if this proves optimistic, it is a
popular server operating system,
encompassing both network and
webserver use. The Borland team
have focused their considerable
skills on providing a Delphi tool
that will compile applications for
either Windows and Linux with no
changes, or limited changes, to the
source. This is vastly more com-
plex than it sounds, but by all
accounts it is well on the way to

being achieved. The project name
for the Linux initiative at Borland,
as I’m sure you all know by now, is
Kylix.

The key advantage for Delphi
programmers is that we will be
able to service demand from cus-
tomers who use either Windows or
Linux, or both, for a lot less
additional programming time than
would be the case for many other
options (such as C++).

One constraint is that the
Borland Database Engine (BDE)
does not translate to Linux. So to
take advantage of the exciting Win-
dows and Linux opportunities, we
must rewrite our code without the
BDE. And if we’re going to do that,
it makes sense to move from a
file-sharing type of database
engine (which many would now
consider outmoded) to a server-
based database engine... such as
InterBase. This gives advantages of
power and scalability, as well as
being very feature-rich.

The principles below should
look familiar to anyone who
uses the BDE to store, retrieve
and manipulate data through a

database. So the switch should
present far fewer technical prob-
lems than might otherwise be
imagined. If this is the case, then
the value of switching to the
approach of direct access to the
database (InterBase in this article)
is to open up the entire Linux
world, for little additional effort.

How Do I Get Started?
InterBase provides components
within Delphi collectively called
the InterBase Express compo-
nents (IBX for short). Four compo-
nents are crucial: TIBDatabase,
TIBTransaction, TIBTable and
TIBQuery. With these components,
you can drive InterBase from
Delphi.

If you need to install InterBase, I
cover that in a later section, enti-
tled, handily enough, Installing
InterBase. Otherwise, drop TIB-
Database, TIBTransaction and
TIBTable components onto a new
form or data module. Also, drop
onto the form a TDataSource com-
ponent from the DataAccesspage of

➤ Figure1: Interbase Express components.

➤ Figure 2: Delphi form.

➤ Figure 3:
TIBDatabase component.

10 The Delphi Magazine Issue 64

the palette, and a TDBGrid from the
DataControls page (Figure 2).

TIBDatabase Component
The TIBDatabase component deals
with connecting your Delphi
application to a physical database
file. In concept, the program you
write makes a single connection to
an InterBase database at some
point. All the security aspects are
dealt with at this point (such as the
logon process, etc). You can then
repetitively select the connected
component, avoiding the time-
consuming need to re-connect to
the database with each access.

To connect to the database,
enter the Windows pathname of
the database file in the Database-
Name property. For databases on
other machines, use the format

DataServer:c:\IBDemos.GDB

where DataServer is the name of
the machine on which the data-
base file resides, instead of the
instinctive j:\IBDemos.GDB format
(Figure 3).

To set the login properties,
double click the TIBDatabase com-
ponent. If you want to force your
users to login to InterBase when
connecting, uncheck the Login-
Prompt checkbox. If you want to
control access yourself, you can fill
in the InterBase user name and
password in the dialog, designing
your own more relevant login
system. The Settings edit box is
filled in automatically when you
complete the other edit boxes
(Figure 4).

To check everything is filled in
correctly, set the Connected prop-
erty to True. If you get an error mes-
sage, it probably means that either
the pathname is incorrectly typed
or the user name and password do
not tally with those InterBase
knows about.

TIBTransaction Component
This component gives you the
(rather incredible) ability to set a
‘start’ point (using the Start-
Transaction instruction), allow the
user to enter any number of entries
to the database, and then to roll-
back all transactions to the start

point if something goes wrong
(using the Rollback command), or
pass the ‘pending’ entries through
to the database (using the Commit
instruction).

Whilst this is useful in advanced
programs, for simpler applications
it can almost be ignored once it is
filled in properly, because it takes
care of itself if there is no intention
to do anything clever with it. You
should note, however, that
InterBase will not work without
using TIBTransaction.

The thing you must do is select
your DefaultDatabase (and change
the name if you want). You can
then ignore this component until
you are ready to introduce your
program to transaction handling.

TIBTable Component
The TIBTable component works
almost in an identical way to
TTable. Fill in the name of the data-
base you want, then select the
desired table name. You should
then be able to connect to the
table.

Because TIBTable is descended
from TDataSet, you can then use
the TIBTable component almost
exactly like a TTable. You can hook
it up to a DataSource, for example,
which can then be hooked up to
any ‘normal’ database component,
or you can double click it to define
your data fields, lookup fields and
computed fields.

Will This Change Under Kylix?
In Kylix, the IBExpress component
set is exchanged for a new
DBExpress component set, which
will work with both Windows and
Linux. From the very preliminary
demonstration I have seen, it looks
like there will be few changes
required to the code I present in
this article to cope with the forth-
coming releases of Delphi. This is
certainly the message that I have
heard broadcast clearly by
Borland staffers. So the techniques
I describe should fit in nicely to the
new Kylix environment.

Installing InterBase
InterBase is available free from
many sources. It is now shipped
with Delphi itself, or it can be

➤ Figure 6: TIBTable component.

➤ Figure 5:
TIBTransaction component.

➤ Figure 4: TIBDatabase Editor
component.

12 The Delphi Magazine Issue 64

downloaded free from the Borland
website (www.borland.com) or the
IBPhoenix site (www.ibphoenix.
com). The latest version (which is
the Open Source version) is
InterBase 6.01 super server. My
advice is to avoid the rather buggy
version 6.0 if you can.

Once downloaded, simply
double click on the installation
program and follow the
instructions.

If you are running Windows NT,
you need Service Pack 5 (or higher)
installed. The Service Pack is
accessible from the Microsoft
website (www.microsoft.com). We
were very anxious about upgrad-
ing our nice stable system from
Service Pack 4, so we proceeded
with some trepidation. The unex-
pectedly good news is that the
upgrade was almost as simple as
any upgrade we have ever encoun-
tered with a Microsoft product.
Clicking the download instruction
on the Microsoft website carried
out, as we later discovered, an
automated interrogation of our
system, which then identified and

downloaded just the files we
needed and went on to implement
the changes, with no further input
from us.

A ‘one click’ upgrade to Service
Pack 5 sounds too good to be true,
but it worked for us, and is perhaps
why Borland could accept the
requirement that Service Pack 5 be
installed as a condition to using the
latest InterBase 6 system.

Putting InterBase To Work
The programming language you
send through to a database is
called Structured Query Language
(SQL for short, usually pro-
nounced as ‘sequel’ [though
opinion is divided! Ed]). The mech-
anism for sending through individ-
ual SQL commands is a TIBQuery
component. Once the TIBQuery has
been set up, you can fill it with your
SQL instruction, send it to
InterBase to run, and then use it to
review, display and walk through
the result set as if it were (gener-
ally) a TTable.

What follows is a brief explana-
tion of how to use the TIBQuery
component, before we move on to
the interesting part explaining the

nuts and bolts of how to use SQL to
manipulate an InterBase database.

TIBQuery
Dropping a TIBQuery onto the form
shows a familiar property list: see
Figure 7.

Fill in the Database name, then
click the ellipsis (...) in the SQL
property to display the Command
Text Editor (see Figure 8).

You can enter your SQL in the
SQL edit area and click OK. Or, you
can select a table and click the Add
Table to SQL button, then click to
select the fields you want and, for
each one, click the Add Field to SQL
and let the editor do the hard work
for you. Either way, click the OK
button to save your SQL. Try click-
ing the Active property of your
TIBQuery to run the query. Don’t
forget to hook up the Dataset com-
ponent to the TIBQuery to see the
information displayed in the
DBGrid component.

If the query will not become
active, it is either because your
SQL is faulty (such as misspelling
the table name), or because your
database component cannot be
made active (maybe you incor-
rectly specifed the location of the
database, or perhaps used an
invalid user name or password in
the TIBDatabase login scripts).

An important feature of the
TIBQuery component is the ability
to set the properties at runtime.
You can create the query, set the

SalesQuery := TIBQuery.create(self);
// ***
// This line will probably become
// SalesQuery := TDBQuery.create(self);
// under the Kylix version, with no other code change
// ***

SalesQuery.SQL.clear;
SalesQuery.SQL.Add(' Select NAME, AREA ');
SalesQuery.SQL.Add(' from ANIMALS ');
SalesQuery.open;

➤ Listing 1

➤ Figure 7: TIBQuery.

➤ Figure 8: Command Text Editor.

December 2000 The Delphi Magazine 13

database, set the SQL and run it
with the code in Listing 1.

SQL
SQL is fairly standard between
database servers. The majority
adhere to a single standard, and
InterBase is well specified in this
respect. So the SQL commands I
will discuss next may well work
with other database servers too,
such as Oracle or Microsoft SQL
server.

Therefore, exploiting the ability
to generate SQL within a Delphi
program and pass it through to
InterBase with a TIBQuerywill stand
you in good stead if you want to
move to another database server
in the future. Migrating databases
is never easy, of course, but at least
running the SQL should be one less
problem to have to deal with.
Within InterBase there are several
categories of operation you may
need to know about.

The basic SQL instructions
include those that change data by
inserting, updating or deleting a
record (a ‘row’ in SQL-speak). You
can retrieve data in a variety of
ways. You can obtain full records,
or just a restricted set of fields
within a record (for example, just
the first and last name of a person,
without having to sift through the
date of birth, title, address, etc).
You can specify a filter, where only
records meeting a desired criteria
are returned (such as all compa-
nies within a specific postcode).
You can also retrieve data as
groups (such as sales totals, aver-
age costs or the total number of
units sold, grouped by customer
name).

There is a whole suite of SQL
commands that deal with
metadata. This is the data that
relates to the database itself,
rather than the information it
contains. Metadata includes, for
example, the names of the tables,
the names and datatypes of col-
umns within each table, and the
indexes. Needless to say, great
care needs to be taken when using
the metadata SQL commands,
because this is where you issue
instructions to delete entire tables.
This is very much something to

avoid in a live database if you want
to avoid your status slipping from
‘Most Popular Person’ within the
organisation!

The final suite of commands
invokes the functions and proce-
dures that you may have pro-
grammed directly into InterBase.
Within InterBase, you can set up a
number of functions that can be
called from outside. These include
stored procedures, triggers and
views, which I will discuss in more
detail more later.

Basic SQL
The four most basic SQL com-
mands are Select, Update, Insert
and Delete. These are explained
below. Once the basic commands
are set, each can be modified and
enhanced in consistent ways: I’ll
run through the enhancements in
the following sections.

When working with SQL, I often
find that understanding the prob-
lem correctly gets you 80% of the
way to understanding the solution.
So, to bring this article to life, the
examples below come from our
own website selling eBooks. Go to
the website, www.ebooks.uk.net,
to see the problems and solutions I
will discuss in action.

The Terminology
Many people use database termi-
nology in different ways. For the
avoidance of doubt, I will use the
terms in the way they are used in
InterBase, as follows:

Database (IBDemos.gdb)
|
|—Table (Animals)
|— Table (Person)
|——-|

|—Column (ref)
|—Column (first name)
|—Column (last name)

A record is a single item within a
table (such as the information for
an individual person).

A column is a category within a
table (such as Ref or FirstName).

A field is a single item within a
record (such as the Ref or first
name of an individual person).

Select Statement
To retrieve all the records from a
database, use the command:

select * from address ;

Where * is the wildcard character
and address is the table name.

The results of the query are illus-
trated in Figure 9. To set up this
simple database interrogator, we
have a TMemo into which the SQL
commands can be typed, a TEdit
box to allow us to enter the loca-
tion of the database we want to
interrogate, and a TDBGrid for the
results. The TDBGrid points to a
TIBQuery via a TDataSet compo-
nent. When the user clicks on the
Run button, the code executed is
something like:

➤ Figure 9: SqlEditor.

14 The Delphi Magazine Issue 64

IBQuery.SQL.text := memo1.text;
IBQuery.open;

To retrieve specific fields, separate
the list of field names with a
comma (,), for example:

select Ref, First, Last
from Address ;

Note that commands are termi-
nated with the semi-colon (;). The
instructions above are not case-
sensitive. Ref, First and Last are
fields within the table Address.

Insert Statement
To insert a record to a table, use
the command:

insert into Address
(Ref, First, Last) ;
values
(2 , ‘Nigel’,’Cohen’)

Note that a number has no quota-
tion marks and text has single
quotation marks.

Update Statement
To update a record, you usually
need to define which record you
want to update. I’ll explain exactly
how this is achieved a little later
on. If you don’t specify which
record(s) to update, the command
below will update every record in
the table:

update Address
set First=’’, Last=’’ ;

Delete Statement
To delete a record, you almost
always need to define exactly
which record you want to delete.
The rather dangerous command
below is used to delete every
record in the table:

delete from Address ;

Enhancements To The
Basic SQL Commands
SQL would not be very useful with-
out the ability to restrict the
records returned to those we actu-
ally require. Within the eBooks
website, for example, we track
visitors to the site. If we change the
layout, it is important for us to see
the effect on behaviour before and
after the change. So the first modi-
fication is the where clause to
restrict the records selected,
updated, etc, to those where cer-
tain conditions are specified:

select PageName
from Visitors
where VisitedDate >
‘12/1/2000’ and
VisitorStatus = ‘Visitor’;

PageName is a field name in the table
Visitors of type string. Visitor-
Date and VisitorStatus are also
fields in the same table.

In this example, there are two
conditions that must be met if the
item PageName is to be reported.
You can equally use the or condi-
tion if that will accomplish what is
desired. If you need to mix the or
and the and conditions, then you
should use brackets around the
related conditions to ensure that
the query works as intended, as
shown in Listing 2.

To make a condition the oppo-
site of, use the word not before the
condition, such as:

delete from Visitors
where not
(VisitedDate > ‘12/1/2000’)
and
VisitorStatus like ‘Visit%’

The brackets above are not really
necessary, and have been used to
clarify what the not negates.

This example illustrates another
technique. Within a SQL com-
mand, the * string matching wild-
card character is not allowed by
InterBase. Its equivalent is the %
character. And instead of stating

VisitorStatus = ‘Visit%’

you use the command like, other-
wise, the % wildcard works just as
you would expect the *wildcard to
work: you are free to use it at the
end of the statement, at the begin-
ning of a string, in the middle, at
the end, or indeed any combina-
tion you might want.

Often you will want to control in
which order the result set appears.
This feature is useful if, for exam-
ple, you want to run through the
results in a controlled order, using
the Order by statement: see the
code in Listing 3.

This query returns its result set
of book titles in descending date
order (that is, most recent publica-
tion date first), if that is what you
want to display. If two books
happen to have been published on
exactly the same date, they will be
displayed in ascending alphabetic
order. Order by assumes the
instruction asc (for ascending),
unless you explicitly state desc (for
descending). Note that both the
where statement and the order by
statement used fields in the record
that were not included within the
selected fields. This is entirely
valid.

update Visitors
set NewVisitor = 'True'
where (VisitedDate > '12/1/2000' and VisitorStatus = 'Visitor')
or (VisitedDate>'11/15/2000' and VisitorStatus = 'Programmer') ;

select Booktitle, Wordcount, Price
from Books
where BookSubject='Poetry' and BookPurpose='Entertainment'
order by Date desc, BookTitle,

select sum(Price) as Sales, avg(Price), count(SalesRef) as SalesCount
from BookSales
where AuthorRef = 50 and SalesDate > '11/1/2000' and SalesDate < '1/12/2000'

select AuthorName, sum(Price) as Sales, avg(Price), count(SalesRef) as SalesCount
from BookSales
where SalesDate > '11/1/2000' and SalesDate < '1/12/2000'
group by AuthorName

➤ Above: Listing 2 ➤ Below: Listing 3

➤ Above: Listing 4 ➤ Below: Listing 5

16 The Delphi Magazine Issue 64

Grouping SQL
The next category of SQL is used
mainly for reporting purposes.

InterBase has a number of arith-
metic functions that can be used,
including SUM(), AVG(), and COUNT(),
to sum numbers, average them, or
count the number of items within
the group, respectively. To report
on the sale of books by author, for
example, you can use the SQL com-
mand shown in Listing 4.

In the example, the phrase as
Sales, which is optional, tells
InterBase to call the column
sum(Price)by the name Saleswhen
talking to the TIBQuery component.
The query reports, for the author
with reference 50, their book sales,
the average price of books sold and
the number of sales transactions in
the month of November.

Whilst this is useful, the func-
tionality is hugely enhanced by the
facility to group items together
using the group by statement. This
instructs InterBase to carry out its
selection routines on each cate-
gory or grouping. In the eBooks
website, this is particularly valu-
able where we want to report on
statistics by author, rather than
simply listing overall totals: see
Listing 5.

In this example, the sales, aver-
age price and number of sales are
reported separately for each
author. This is great for manage-
ment, who may want to devote
more promotional space on the
site to the authors whose books
the customers prefer to read. One
common error when using the
group by command is to try using a
grouping that conflicts with the
selected items. If you are selecting

book titles within the select state-
ment in Listing 5, for example,
InterBase would complain at the
instruction to group the result set
by Author, since it would not know
how to collate the book title. To see
the statistics by book title and by
author, the solution would be to
select both author and book title,
and to group by both: see Listing 6.

The above solution does not
quite achieve what we desire, in
that it provides a break at each new
book title, but it does not provide a
sub-total for the author each time
an author changes. Two possible
solutions are to run two separate
queries, each providing the differ-
ent breaks, or to use a stored pro-
cedure, which I’ll discuss shortly.

Metadata SQL
You need to update the metadata
far less frequently than the data
itself. If you’ve never met metadata
SQL before, you may want to look
at the SQL files on this month’s
companion disk. To get started on
working with metadata in Inter-
Base, you may want to use some or
all of the commands given in
Listing 7.

This statement creates a table
called RatingTheBook. It has a Ref
which is its primary key and it has

various default values. The
InterBase documentation pro-
vides help on the datatypes avail-
able. For those using InterBase 6.0
and above, the datatypes are fairly
intuitive. If you use an earlier ver-
sion of InterBase, you would be
wise to restrict your use of
datatypes to those shown, noting
that the Delphi float or double is
replaced by the numeric(3,1)
format, where the first number is
the total length of the field (in char-
acters), and the second number is
the number of decimal places
required.

Note the mandatory use of
commas to terminate fields, no
comma for the last statement and a
semi-colon to terminate the state-
ment, as shown in Listing 8.

This statement changes an exist-
ing table (Address), by adding
some columns and deleting one
(VerifiedComments, added in an ear-
lier Create statement). Note the
commas and semi-colons.

Advanced SQL
There are two constraints so far
that cause difficulty, but for which
there is a solution.

So far, we have selected data
from one table alone. To combine
data from two tables, you can use
the syntax shown in Listing 9.

In this example, we want to
report the name of the author,
whose name is in the Address table,
when we report on the book title in
the Books table. The database was
set up with Books including a
column called AuthorRef to refer
back to the Address table. The con-
ditions required to join the tables
together are defined within the
where statement. Note that each
table is given a letter within the
from statement: this can be used to
distinguish fields in two tables

select BookTitle. AuthorName, sum(Price) as Sales, avg(Price), count(SalesRef)
as SalesCount

from BookSales
where SalesDate > '11/1/2000' and SalesDate < '1/12/2000'
group by BookTitle, AuthorName

create table RatingTheBook
(
Ref integer NOT NULL PRIMARY KEY,
ReviwersRef integer NOT NULL,
BookRef integer NOT NULL,
RatingDate date,
RatingAward numeric(3,1) default 0 ,
Comment varchar(5000) default null,
RatersAge integer default 0,
IsActive char(1) default 'T'
);

➤ Above: Listing 6 ➤ Below: Listing 7

alter table Address
add IsVerified char(1) default 'F',
add VerifiedDate date,
add Comments varchar(2000) default null,
drop VerifiedComment;

select (a.first || ' ' || a.last) as Name, b.BookTitle
from Address a, Books b
where a.Ref = b.AuthorRef
order by a.last, a.first

➤ Above: Listing 8 ➤ Below: Listing 9

December 2000 The Delphi Magazine 17

which have a common name (such
as ref).

This is fine when we want to
report only on records that match
in both tables. But this may be
inadequate. In the eBooks site, we
report on customers who have
ordered books. The report is mis-
leading, though, if we do not also
see the customers who have not
ordered books along with the
others. So the statement uses an
alternative method of joining with
the join statement, see Listing 10.

In this example, the left outer
join means: ‘select everything in
the table on the left (the Address
table), and only items within the
joined table, OrderDetails, where
the OrderDetails field Ref equals
the Address field Ref’.

If we had used inner join,
InterBase would have reported
only the records in Address which
match the records in OrderDetails
(omitting, therefore, anyone who
has not ordered anything). Simi-
larly, if we had used right outer
join, InterBase would have
reported only Address records for
which there was an order, but all
records within OrderDetails, even
if there were no matching Address
record. This right outer join
report might be interesting to, say,
the programmer responsible for
ensuring no orders are taken
where the buyer has not filled in
their address.

The joins can be extended indefi-
nitely if information is required for
more than two tables, as shown in
Listing 11.

Final Refinements
InterBase has two more features
that give almost unlimited power
to the programmer.

With select statements, there
are often occasions where you will
want to pull out a result set and
then perform a second select
statement on that result set. For
example, if you pulled out a list of
summed sales by author, you may
want to report it in descending
order of summed sales. In the first
select statement, the order by
statement will not be able to work
on the results of the summing. So
there is a View facility that can be

programmed into InterBase which
allows you to define a Select state-
ment. The name of the View can
then be used within a second
Select statement as if it is a table,
with the result set of the first View
available to be manipulated by the
second select statement.

The icing on the cake for
InterBase is stored procedures. A
second problem with the select
statement is its inability to do work
on a record as you are going
through selecting or summing it.
You may want, for example, to
update a record based on a calcula-
tion to be performed at the time of
the sum. Or you may want to pro-
duce totals conditionally, such as
adding a sale to the Debit total if it
is plus, and to the Credit total if it is
minus. The stored procedure
allows you to define a select state-
ment and, on a record by record
basis, do anything you want to,

➤ Above: Listing 10 ➤ Below: Listing 11

select a.Ref, a.First, a.Last, d.OrderDate, d.Bookref, b.BookTitle
from Address a left outer join OrderDetails d
on d.PersonRef = a.Ref
left outer join books b
on b.ref = d.bookref
where OrderDate > '12/1/2000'
order by Last, OrderDate

select a.Ref, a.First, a.Last, d.OrderDate, d.Bookref
from Address a left outer join OrderDetails d
on d.PersonRef = a.Ref
where OrderDate > '12/1/2000'
order by Last, OrderDate

before moving on to the next
record. The syntax and use of
stored procedures is explained in
my Delphi To InterBase In 15 Min-
utes guide which is included on
this month’s companion disk.

There is no doubt that InterBase
is a powerful tool. Borland say they
are fully committed to it as a key
tool within the Borland/Inprise
product range. There is a lot of reti-
cence by programmers to use this
powerful and free tool for fear of its
complexity. I hope this article has
convinced you that the reputation
of InterBase as being difficult to
implement is ill founded.

Nigel Cohen develops systems
using Delphi and InterBase, such
as the ebooks.uk.net website fea-
tured in this article.

➤ Figure 10: Shameless plug: the eBooks website, from which a
number of the examples in this article come.

	Why Switch From The BDE?
	How Do I Get Started?
	TIBDatabase Component
	TIBTransaction Component
	TIBTable Component
	Will This Change Under Kylix?
	Installing InterBase
	Putting InterBase To Work
	TIBQuery
	SQL
	Basic SQL
	The Terminology
	Select Statement
	Insert Statement
	Update Statement
	Delete Statement
	Enhancements To The Basic SQL Commands
	Grouping SQL
	Metadata SQL
	Advanced SQL
	Final Refinements

